Motexafin gadolinium disrupts zinc metabolism in human cancer cell lines.

نویسندگان

  • Darren Magda
  • Philip Lecane
  • Richard A Miller
  • Cheryl Lepp
  • Dale Miles
  • Mimi Mesfin
  • John E Biaglow
  • Vincent V Ho
  • Danny Chawannakul
  • Shailender Nagpal
  • Mazen W Karaman
  • Joseph G Hacia
چکیده

To gain a better understanding of the mechanism of action of the metal cation-containing chemotherapeutic drug motexafin gadolinium (MGd), gene expression profiling analyses were conducted on plateau phase human lung cancer (A549) cell cultures treated with MGd. Drug treatment elicited a highly specific response that manifested in elevated levels of metallothionein isoform and zinc transporter 1 (ZnT1) transcripts. A549 cultures incubated with MGd in the presence of exogenous zinc acetate displayed synergistic increases in the levels of intracellular free zinc, metallothionein transcripts, inhibition of thioredoxin reductase activity, and cell death. Similar effects were observed in PC3 prostate cancer and Ramos B-cell lymphoma cell lines. Intracellular free zinc levels increased in response to treatment with MGd in the absence of exogenous zinc, indicating that MGd can mobilize bound intracellular zinc. These findings lead us to suggest that an important component of the anticancer activity of MGd is related to its ability to disrupt zinc metabolism and alter cellular availability of zinc. This class of compounds may provide insight into the development of novel cancer drugs targeting control of intracellular free zinc and the roles that zinc and other metal cations play in biochemical pathways relevant to cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines.

There is an emerging appreciation of the importance of zinc in regulating cancer cell growth and proliferation. Recently, we showed that the anticancer agent motexafin gadolinium (MGd) disrupted zinc metabolism in A549 lung cancer cells, leading, in the presence of exogenous zinc, to cell death. Here, we report the effect of MGd and exogenous zinc on intracellular levels of free zinc, oxidative...

متن کامل

Motexafin gadolinium enhances p53-Mdm2 interactions, reducing p53 and downstream targets in lymphoma cell lines.

BACKGROUND Loss of p53 renders cells more susceptible to acute oxidant stress induced by oxidant-generating agents such as motexafin gadolinium (MGd). We hypothesized that reactive oxygen species (ROS)-generating MGd results in low-level p53 expression, making cells more susceptible to oxidant stress. MATERIALS AND METHODS Lymphoma cells were incubated with different concentrations of MGd wit...

متن کامل

Motexafin-gadolinium taken up in vitro by at least 90% of glioblastoma cell nuclei.

PURPOSE We present preclinical data showing the in vitro intranuclear uptake of motexafin gadolinium by glioblastoma multiforme cells, which could serve as a prelude to the future development of radiosensitizing techniques, such as gadolinium synchrotron stereotactic radiotherapy (GdSSR), a new putative treatment for glioblastoma multiforme. EXPERIMENTAL DESIGN In this approach, administratio...

متن کامل

Dynamic Network of Transcription and Pathway Crosstalk to Reveal Molecular Mechanism of MGd-Treated Human Lung Cancer Cells

Recent research has revealed various molecular markers in lung cancer. However, the organizational principles underlying their genetic regulatory networks still await investigation. Here we performed Network Component Analysis (NCA) and Pathway Crosstalk Analysis (PCA) to construct a regulatory network in human lung cancer (A549) cells which were treated with 50 uM motexafin gadolinium (MGd), a...

متن کامل

New polyethyleneglycol-functionalized texaphyrins: synthesis and in vitro biological studies.

The synthesis of four new analogues of motexafin gadolinium (MGd), a gadolinium(III) texaphyrin complex in clinical trials for its anticancer properties, is described. These new derivatives contain either 1,2-diaminobenzene or 2,3-diaminonaphthalene subunits as the source of the imine nitrogens and bear multiple 2-[2-(2-methoxyethoxy)ethoxy]ethoxy (PEG) groups, on either meso aryl or beta-pyrro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 65 9  شماره 

صفحات  -

تاریخ انتشار 2005